
vis theory

adam okulicz-kozaryn

adam.okulicz.kozaryn@gmail.com

this version: Friday 7th March, 2025 11:45

1/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

2/68



why vis? why bother? whats the big picture?

• understanding your data is fundamental/critical for

research/insight

• vis is the best way to understand data (humans; AI aside)

• data are numbers, usually many and in a matrix

◦ vis allows humans to comprehend those many numbers

◦ if you look at numbers you will be slower in understanding

• pictures are not less “scientific” than numbers!

• best journals mostly do vis: nature, science, etc

3/68



Know Your Data!

• simply cant use it well if you dont know it well

◦ (not just data; the field: theory, lit, method, etc)

◦ this is where you beat IT folks (MS/PhD just in IT)

• again, be prepared to invest a lot of time into your data

◦ sth you’re passionate about

◦ or can make $ (now or in future career)

• this is where vis comes in–best way to get to know data

• don’t forget to think about it, don’t be mindless

◦ ask questions, be investigative, be critical

• double check, cross check, give to others to check/present

4/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

theory (Tufte) 5/68



make it interesting and tell a story!

• its all about story telling

• the greatest value of a picture is when it forces us to

notice what we never expected to see

• good stories are anomalous: Dog bites man is not news.

Man bites dog is news.

◦ REFS:

• http://www.edwardtufte.com/
• http://www.stat.columbia.edu/~gelman/research/published/storytelling.pdf [ideally

anomalous, but also immutable]

• Kosslyn “Clear and to The Point” http://www.amazon.com/

Clear-Point-Psychological-Principles-Presentations/dp/0195320697

theory (Tufte) 6/68

http://www.edwardtufte.com/
http://www.stat.columbia.edu/~gelman/research/published/storytelling.pdf
http://www.amazon.com/Clear-Point-Psychological-Principles-Presentations/dp/0195320697
http://www.amazon.com/Clear-Point-Psychological-Principles-Presentations/dp/0195320697


be simple: avoid clutter

• everything should be made as simple as possible

• no padding: put only data needed for a specific purpose

• no clutter: eg single graph must only present the data that

are highly related and must be compared

• put into appendix if not very relevant but maybe useful

◦ those looking for extra info will find it

◦ those into the main story won’t get distracted

theory (Tufte) 7/68



avoid visual clutter

• all parts/attr of vis must mean sth (convey info)

◦ shades

◦ colors

◦ decoration

◦ etc

• everything must convey info

theory (Tufte) 8/68



chartjunk

•

The interior decoration of graphics generates a lot of

ink that does not tell the viewer anything new. The

purpose of decoration varies to make the graphic

appear more scientific and precise, to enliven the

display, to give the designer an opportunity to exer-

cise artistic skills. Regardless of its cause, it is all

non-data-ink or redundant data-ink, and it is often

chartjunk.

Edward Tufte “The Visual Display of Quantitative Information”

theory (Tufte) 9/68



chartjunk/business graphs

http://exceltemplates.net/images/2009/salesreport.jpg[11/29/2009 9:41:51 PM]
theory (Tufte) 10/68



chartjunk

theory (Tufte) 11/68



not chartjunk (the economist)

http://www.womentech.info/blogwt/wp-content/uploads/2009/10/LeisureTime1.jpg[12/3/2009 1:44:03 PM]

theory (Tufte) 12/68



not chartjunk (the economist)

http://2.bp.blogspot.com/...oEo/Sg0D5vjckeI/AAAAAAAAA7Q/eCnckbIEGu8/s800/Time-Spent-Eating-and-Sleeping.jpg[12/3/2009 1:44:37 PM]

theory (Tufte) 13/68



balance!

• colors (eg either use toned down or stark contrasts)

• fonts: titles, notes, labels, etc should be proportional

• thickness of lines

• and everything else

• in general: rather use less ink than more

• note: my classic 90s mpl theme tends to be heavier on ink

◦ but then I do make sure to keep it barebone/simple

theory (Tufte) 14/68



one v several vis

• usually to tell a story, may need several vis

• say to show problems in SJ:

◦ low educ, poverty, crime, etc

◦ but can also show a summary, eg an index

◦ and can show perc chng: 100*(pop10-pop00)/pop00

theory (Tufte) 15/68



good practices

• use graphs as much as possible, ditch all tables

• BUT avoid graph padding and within-graph data padding

• be as simple as possible (never use chart junk)

• the fewer graphs the better (like nature, science)

◦ but to have few awesome ones to share with the world,

first have to have dozens in notebook (so clearly mark the

main ones v the auxiliary/robustness checks ones) (for

class presentation mostly focus on main ones, the story)

◦ otherwhise your vis won’t be

robust/bullet-proof/thought-through

• display measures of uncertainty, typically 95%CI

theory (Tufte) 16/68



think about it/meaning: the ’so what?’ question!!!

• ok, you’ve got the vis... now think about it

• what does it mean? interpret substantively!

◦ (beyond technical correctness; lack of mistakes)

◦ as you look at it, ask yourself the ’so what?’ question

◦ if not happy with the answer:

◦ drop it, comment it out, or leave it as it is, and

◦ keep going, and produce a better vis

• I grade substantive meaning, too

• in fact, the idea, the meaning, the contribution to the

knowledge is most important!

theory (Tufte) 17/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

examples 18/68



exemplary examples

• time to produce new knowledge

• examples to inspire–all simple but great insight

◦ the idea counts most

• [to find out more about vis/research just goog vis title]

examples 19/68



•
examples 20/68



•
examples 21/68



•

examples 22/68



•

examples 23/68



•

examples 24/68



•examples 25/68



•

examples 26/68



•
examples 27/68



•
examples 28/68



•

examples 29/68



pov chng: unexpected! huge vals and var!

•

examples 30/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

strategy / howto graph it / galleries 31/68



strategy
• sometimes complicated or lengthy code esp for

fine-tuning/customization, a ton of options, impossible to

memorize

• way easier to figure it out with

◦ examples/galleries: syll sec ’galleries’, esp first 2 Py

◦ or examples i gave you in ipynb

• copy from elsewhere

◦ copy-paste from me, internet/google, chatGPT, etc

◦ Gemini! code cell: generate with AI; explain code; fix error

◦ but then adjust it, clean it up, streamline, simplify

◦ and focus on story telling, your story

• google what you study “+ python notebook”

eg: ”policing and crime python notebook”strategy / howto graph it / galleries 32/68



howto graph it?

• again, galleries and my ipynb by cat:

distribution / hist; ranking / bar charts, etc

• but also consider lev of measurment:

◦ continuous: hist, scatterplot, lineplot

◦ categorical: hist, tab, crosstab/heatmap

• bar chart! ranking, summary stats by grp and subgrp

strategy / howto graph it / galleries 33/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

key sci computing rules [next class] 34/68



Wilson put it well

• print out Box 1 from these 2 art

◦ hang it at your office, home, and elsewhere
• https://journals.plos.org/plosbiology/article?id=10.

1371/journal.pbio.1001745

• https://journals.plos.org/ploscompbiol/article?id=10.

1371/journal.pcbi.1005510

• and Know Your Data (2nd slide)

• and variations on these, and other general rules follow

key sci computing rules [next class] 35/68

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510


simplicity, cleanliness, and organization!

• keep it as simple as possible

◦ especially if overwhelmed or struggling

• say retain only 5vars and 25obs

◦ much easier to understand such data

• simplicity transpancy clarity:

◦ use fancy code: eg loops iff they simplify

• have chunks of code only once

• code it all from raw to final (replication principle)

• organize: sections, comments, and logical order (eg

rewrite, move code around)

key sci computing rules [next class] 36/68



be fast/efficient

• the fancier the code, the more time/effort to write it

• don’t do fancy things unless they save time in the long run

• it’s all about managing complexity

• automate as much as you can

• simplify and be clear

• have general modules (sections or separate files)

◦ that can be reused for different projects

• be lazy: don’t reinvent the wheel–google often

key sci computing rules [next class] 37/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

elaboration, details, in other words; general rules 38/68



accuracy / correctness

� it’s fundamental and obvious: vis bad if wrong

◦ double check

◦ especially at the beginning do not assume things

◦ double/triple check the whole code once finished

◦ go public, present, give it to others

• its human to err, there will be mistakes

elaboration, details, in other words; general rules 39/68



1.write; 2.rewrite/reorganize; 3.optimize/improve

• 1. dump it, do “free writing” with code, too (i often come

up with some idea out of sudden, and just write it down)

◦ start simple and keep on adding things

• 2. rewrite/reorganize your code

• 3. optimize/improve

◦ dont optimize too early, first make it work

◦ (there is often a tendency to over optimize, ie spending

days on small chunk of code that does not really matter

that much)

• then can rewrite/reorganize again

elaboration, details, in other words; general rules 40/68



rewrite and reorganize
• efficiency: few lines of code do many things

◦ do more in fewer lines, drop unnecessary things

• reorganize and rewrite!

◦ just like your papers: you print them out

◦ and move paragraphs and words around

◦ and you simplify and strike out unnecessary words

• do the same with code! drop everything you can!

� code should be “tight”

◦ as few lines as possible to perform given task

• use wrappers on more laborsome functions, google it,

stack-overflow, etc

◦ instead of mpl: seaborn, pandas, etc
elaboration, details, in other words; general rules 41/68



efficiency: on the other hand

• but you also want to be extensive in a way

• in a good way...

• like with free writing, so with code

◦ do “free writing”

• be expressive and dump your ideas into notebook

• just be organized so that you know what is going on!

• yes, by all means, be efficient–drop unnecessary things

• but do not drop things that may be useful

◦ say in the future or other projects

◦ may comment them out, move to LATER sec, etc

elaboration, details, in other words; general rules 42/68



optimize/improve/get fancy

• think how to optimize

• related to efficiency: do more in fewer lines

◦ but here instead of dropping unnecessary stuff

◦ we get fancy: loop, list comprehension, your own function

• but first: dont reinvent the wheel, search for existing

functions

◦ only then optimize yourself, eg loop, write your own

function

◦ eg I hate my kludge with scatterplot labels, mistake prone,

but looks like nobody wrote a function/wrapper to have it

easy–will have to do it myself

elaboration, details, in other words; general rules 43/68



simplicity: different, often opposite, from

optimization
� people don’t realize this!

• be as simple as possible in writing the code (papers, too)

� the more code you have (always try to get less) and the

more complicated (optimized) it is:

◦ the more likely you have mistakes

◦ and the more difficult it is to find them

• do not complicate (optimize) your code for the sake of

fanciness

◦ yes simpler is better

elaboration, details, in other words; general rules 44/68



standardize

� standardize− >fewer mistakes (eg make fewer decisions,

like a template, on autopilot)

◦ standardize− >code more transparent, easier to find

weird stuff, errors

• like have a template for some vis: say always hist for all

key vars; scatterplot matrix for all continuous vars, etc

• and then have the creative part, vis for specific project

elaboration, details, in other words; general rules 45/68



modularity

• break large tasks into small (manageable)

blocks/components

◦ (like in dissertation–don’t overwhelm yourself doing

everything at once)

• the components are like sections in a paper, step-by-step

• it is easy then to reuse these components

• so have separate ipynb for different tasks; and have sec

and subsec within ipynb

elaboration, details, in other words; general rules 46/68



automation (closely related to standardization)

• everything should be coded

• no copy-paste, point-and-click, etc

• dont use excel for anything!

� automate as much as possible!

� practical reason: faster! (in the long run)

� technical reason: computers *never* make mistakes

� eg pull automatically from database, upload to github

etc

elaboration, details, in other words; general rules 47/68



document

• have text fields in ipynb and # comments in code fields

• meaningful commit messages in git

• may have changelog (version, date and explain what

changed, eg: 0.1 dumped raw ideas; 0.2 loaded X data;

0.21 loaded Y, Z data)

• difficult to overestimate importance of documentation

• note: typically, i underdocument, too

elaboration, details, in other words; general rules 48/68



singularity

• have only one chunk of code and one file in one place,

ideally in git

• as projects grow, get complex and maybe branch off, do

have parents-children, and possibly branches

• elaborate: eg i do a lot with gss, draw flow-chart

• at first it was a first paper

• then i write 2nd paper, and realize most of dat man is

the same

• so i create one root/parent with common code for all gss

papers

elaboration, details, in other words; general rules 49/68



portability

• import libs at the beginning, the fewer the better

◦ i overdid, i need to cut down

• you could get version of key libs, ie pandas and mpl and

save info

• but just 2 libs, can easily trace it back if sth doesnt run

in couple years

• but do always save raw data! likely in couple years

dataset may disappear or change

• also keep in mind magics (%matplotlib) for running in

different environments eg spyder

elaboration, details, in other words; general rules 50/68



tradeoffs: life is difficult
� simplicity is sometimes inversely (positively) related to

efficiency (amount of code/being verbose) (as you cut

stuff down, it may take longer to figure it out

(parsimounious is sometimes complicated)

◦ simplicity usually inveresely related to optimization (eg

loops)

� simplicity often inversely related to automation (eg

complicated code with if else)

� so make choices, the more serious you are about coding,

the more work you do:

◦ the more you should care for automation, efficiency, and

optimization

◦ the more automation/efficiency/optimization actually

simplifies

• like Py v excel: excel simpler for simple tasks

◦ but Py is simpler for complicated tasks

• stick with one soft! [i think i’m quitting stata]

elaboration, details, in other words; general rules 51/68



tradeoffs: life is difficult

� so make choices, the more serious you are about coding,

the more work you do:

◦ the more you should care for automation, efficiency, and

optimization

◦ the more automation/efficiency/optimization actually

simplifies

• like Py v excel: excel simpler for simple tasks

◦ but Py is simpler for complicated tasks

• ideally stick with one soft [maybe i’m quitting stata]

elaboration, details, in other words; general rules 52/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

and yet one more variation on general rules 53/68



more principles

• from 2 books about general programming (classics and

free!)

◦ http://catb.org/esr/writings/taoup/

◦ http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html

and yet one more variation on general rules 54/68

http://catb.org/esr/writings/taoup/
http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html


clarity

• “design for transparency and discoverability”

◦ write clean code [eg split 1 fn over many l for readability]

◦ avoid fancy code

◦ fancy code is buggier

◦ clarity is better than cleverness

• eg:

◦ group logical chunks together

◦ more than twice nested loops gets confusing

◦ if your code is mostly loops, consider functions

and yet one more variation on general rules 55/68



modularity

• “write simple parts that are cleanly connected”

• “controlling complexity is the essence of computer

programming”

◦ debugging dominates development

• eg:

◦ better many small loops that each does one thing, than

one huge (>100 lines) loop that does everything

◦ clear sections of one file

◦ or many files instead of one file without sections

and yet one more variation on general rules 56/68



modularity

• code should be organized logically not chronologically

◦ do free writing, but then reorganize

◦ like with papers, code should be rewritten, eg:

◦ no data management in data vis part

◦ move rename, replace, etc earlier

and yet one more variation on general rules 57/68



composition

• “design programs to be connected to other programs”

• notebook or its sec will produce output for another

notebook or sec

• eg: you clean up data in one file to make data ready for

another one to vis

◦ or just have one big file

• but the workflow needs to be logically organized

and yet one more variation on general rules 58/68



optimization (fancier, fewer lines)

• yes, but “get it working before optimizing” !

• eg:

◦ first make mpl hist for one var, make it working

◦ and then deploy it for 10 vars with a loop

and yet one more variation on general rules 59/68



extensibility

• “design for the future because it will be sooner than you

think”

◦ you will reuse your code in the near future

◦ so write it clean

◦ have sections, etc

◦ use lots of comments

◦ reorganize, rewrite

◦ optimize

and yet one more variation on general rules 60/68



silence

• “when a program has nothing surprising to say, it should

say nothing”

• drop unnecessary code

◦ if you think it may be useful in the future

comment it out

• do not generate unnecessary output, do not lose your

reader in unnecessary clutter

◦ if the output has nothing useful to say it should be dropped

◦ (or commented out)

and yet one more variation on general rules 61/68



automation (again)

• “rule of generation: avoid hand-hacking”

• because humans make mistakes and computers don’t,

computers should replace humans wherever possible

• automate anything that you can

• but stay human, focus on fun creative part, eg vis

• dont automate everything; eg dont crank out bunch of vis

mindlessly

and yet one more variation on general rules 62/68



save time: reuse (copy-paste), don’t reinvent the

wheel
• if someone has already solved a problem once, reuse it!

• it is very unlikely you are doing something completely new

◦ eg google ’student data analysis python’

• if anything, the problem is that people do not share their

code

• usually all you need to do is to adjust somebody else’s

code or your old code

◦ its like doing lit rev, but with code

◦ and with data too, eg google scholar psid biking to find

out how people use biking var in psid

and yet one more variation on general rules 63/68



save time: reuse, don’t reinvent the wheel

• ask people for code:

◦ your supervisor

◦ journal article authors

◦ your colleagues, friends, etc

• share your code

◦ you may want to protect some parts of it

◦ (critical, innovative research ideas, etc)

◦ but share as much as possible

• acknowledge others’ work

and yet one more variation on general rules 64/68



defensive programing

• “people are dumb-make program bullet-proof”

◦ you will find negative income, age over 200

• think of likely possibilities/instances; especially if you

suspect some specific problems

• thats also why its so important to interpret critically your

vis, if something looks funny or unlikely, maybe there’s a

mistake

and yet one more variation on general rules 65/68



outline

theory (Tufte)

examples

strategy / howto graph it / galleries

key sci computing rules [next class]

elaboration, details, in other words; general rules

and yet one more variation on general rules

the zen of Python

the zen of Python 66/68



• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren’t special enough to break the rules.

• Although practicality beats purity.

• Errors should never pass silently.

• Unless explicitly silenced.

• In the face of ambiguity, refuse the temptation to guess.
the zen of Python 67/68



• There should be one– and preferably only one –obvious

way to do it.

• Although that way may not be obvious at first unless

you’re Dutch.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it’s a bad idea.

• If the implementation is easy to explain, it may be a good

idea.

• Namespaces are one honking great idea – let’s do more of

those!

the zen of Python 68/68


	theory (Tufte)
	examples 
	strategy / howto graph it / galleries
	key sci computing rules [next class]
	elaboration, details, in other words; general rules
	and yet one more variation on general rules
	the zen of Python

