ps0 [upto 5pts extra credit]

[version: Thursday 23rd January, 2025 15:14]

- 1. find datasets you would like to use, AND identify variables you'd like to use, and in a paragraph or few paragraphs explain what's your research questions and hypotheses, and why these data and variables, like a research outline/abstract (this class is as much about visualization as about data! also ask q about data!)
- 2. load your own data and do basic desciptive stats, incl a graph or few, and as always intrepret all (substantial meaningful) output
- tip: push it to github early and email listserv and we'll try to give you comments :)

general directions (always the same):

- i will show your code in class and possibly post some of your code or link to it-again, as per our core values-opensource, transparency, sharing; but if you'd like to keep your code private, that's fine-just let me know, and i will keep your code secret (no penalty, except that you may get less feedback-if we discuss your code in the class, you will benefit from it!)
- you must submit all the code that was executed from the very beginning starting with the very raw data as per replication principle; unless data is too big to fit online, then just start with a comment, eg "to fit data online i had to take a random sample of 10perc"
- all ps are mostly cumulative-you can, and should, include much of previous code you've written for this class; can also use code you've written outside of this class (other classes, projects, etc)-but you have to clearly mark the code that has not been written for this class-otherwise, scholastic dishonesty!
- because you are only submitting code, it must load data from Internet-most data already online; if not: put your data into your github, google drive, etc; (when you put data into any public space, try not to violate data copyrights... I haven't heard of anyone having problems with that, but be careful-for instance you may subset dataset to few vars and smaller sample); and it is also easier to experiment on small datasets
- keep it simple! at the beginning of your notebook drop unnecessary vars; and even retain only certain, say most important, observations; keep it manageable; it is much easier to learn using simple data; can always complicate later!; much better to do it right using simple data than do it wrong using complex data!
- have nice structure in your file: sections, subsections, etc; may also have multiple files
- can submit ps early and email listserv and ask for comments
- it is great to copy code from others; again, one of the rules for this class is 'be lazy': don't reinvent the wheel, whatever you are coding, it has already been done, google things often; but of course you cannot submit 100% code by someone's else; and if you submit a substantial chunk not written by you and for this class, cite!
- if you do something extra/fancy that is relevant and closely related to the assignment questions, it will be extra credit
- use coding rules that we've learned so far
- submit (only) the Py notebook into git repo; ps are due by the beginning of the next class unless indicated otherwise, eg "due in 2 weeks"; late ps are not accepted
- we are on the way to developing the final project with these ps: as we progress, your ps should start resembling a coherent and logical project where you use learned techniques to answer interesting questions- say in few sentences (probably at the beginning) why are you doing what you are doing-that is, answer the "so what question": "ok, you're gonna run all that code, and so what?" what's the goal of all that, why are you doing this? you need a compelling justification for what you are doing; typically: to answer some exciting questions: say what are those questions you want to answer; related: say why you use data you are using, is it best?, does it serve the purpose?; also, feel free to ask us questions in comments