class review

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Tuesday 24th April, 2018 17:28

outline

review [if time! otherwise review at home!]

outline

review [if time! otherwise review at home!]

what is it?

- this set of slides reviews what we have covered earlier
- i.e. the following slides are just verbatim copies of slides you've seen earlier

solving the problem

	Y_{i}	X_{i}	$ \begin{pmatrix} Y_i - \overline{Y} \\ = y_i \end{pmatrix} $	$\left(X_i - \overline{X}\right) = x_i$	y_i^2	x_i^2	$y_i x_i$
	2	1	-2.33	-1	5.53	1	2.33
	5	2	0.67	0	0.45	0	0
	6	3	1.67	1	2.79	1	1.67
Σ	13	6	0	0	8.67	2	4
mean	4.33	2					

$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{4}{2} = 2$$

$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X} = 4.33 - (2)(2) = 0.33$$

example: age and fear

- In this example, imagine that we have some sort of survey that measures people's fear of crime, and that our hypothesis is that fear of crime increases with age.
 Assume the fear measure is an index ranging from 0 to 15.
- ♦ First, we calculate the means. Second, we calculate the deviations from the means and the their squares for each observation, as well as the co-product of the X and Y deviations. Finally, we sum these up.

example: age and fear

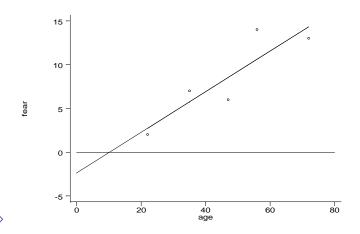
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{342}{1473} = .232$$

$$\diamond \ \hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X} = 8.4 - (.232)(46.4) = -2.365$$

$$\hat{Y}_i = \hat{\beta}_1 + \beta_2 X_i = -2.365 + .232 X_i$$

how would you interpret this?

the estimated regression line



variance and std error of regression

- ok, we know how to calculate betas and fit the line (that min the sum of the squared resid)
- but there are lines that fit better and lines that fit worse in different samples
- we need a measure of uncertainty, i.e. how well our line fit the data...
- ♦ and the fit is measured by residuals...
- ... so our measure of uncertainty has to do with residuals!

variance and std error of regression

- again, the mean of the residuals is zero (hence, \bar{e} drops out)
- why divide by n-2?
- \diamond s^2 and s are measures of the spread of the points around the estimated regression line.
- \diamond they are estimators of the variance and standard deviation of the disturbance terms: σ^2 and σ

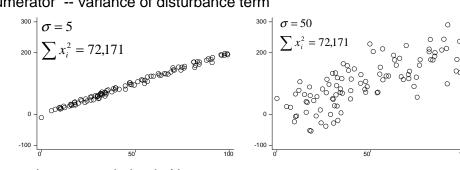
from predicted values to std err

i	$\hat{Y_i}$	e_i	e_i^2	
1	2.739	-0.739	0.546	$\diamond \ \ s = \sqrt{\frac{\sum_{i=1}^{5} e_i^2}{n-2}} = \sqrt{\frac{21.7}{3}} =$
2	5.755	1.245	1.556	2.7
3	8.539	-2.539	6.447	what is it measuring?
4	10.627	3.373	11.377	$\diamond s_{\hat{a}} = \frac{s}{s} = \frac{2.7}{s} = 0.7$
5	14.339	-1.339	1.793	
_				v now does it diller from s!

0 21.713

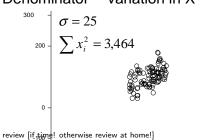
review [if time! otherwise review at home!]

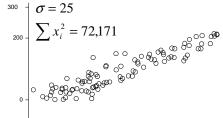
Standard Error of the Slope Coefficient Numerator -- variance of disturbance term



-100 -

Denominator -- variation in X





12/26

key ols assumptions

- \diamond the true model is linear $Y_i = \beta_1 + \beta_2 X_i + u_i$
- $\cdot cov[X_iu_i] = 0 X$ and u are not correlated
- · $var[u_i] = \sigma^2$ constant variance
- ⋄ if true, then BLUE: Best Linear Unbiased Estimators
- (there are other assumptions, too)

predicted values and residuals

$$\diamond \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

- ♦ for obs 1:
- $\diamond \ \hat{Y}_1 = 10.24 + (-0.524)(17) = 1.332$
- $\diamond e_1 = 1 1.33 = -0.33$

confidence intervals

 \diamond In general, a confidence interval is the point estimator plus or minus a margin of error, which consists of a distribution parameter (z or t) times the standard error of the estimator. In this case (small sample, σ unknown, we use the t distribution.

$$\diamond PE \pm (t_{\frac{\alpha}{2},DOF})(SE) = \hat{\beta}_2 \pm t_{0.025,3} s_{\hat{\beta}_2}$$

hypothesis test

the null is that slope ("the unobserved true parameter") is zero (i.e. no effect)

$$\diamond H_0: \beta_2 = 0$$

$$\diamond H_A: \beta_2 \neq 0$$

$$\diamond t = \frac{\hat{\beta}_2 - \beta_2}{s_{\hat{\beta}_2}}$$

exercise 1

you regressed car's price on its weight

```
price | Coef. Std. Err.
```

```
-----
```

```
weight | 2.044063 .3768341
```

- interpret the coefficient
- is it significant ?
- ⋄ calculate 95% CI

the 'beta' option

. sum wage edu Variable	c exp Obs	Mean	Std. Dev.	Min	Max
wage	534	9.023939	5.138876	1	44.5
educ	534	13.01873	2.615373	2	18
exp	534	17.8221	12.37971	0	55

•	reg	wage	educ	exp,	beta
	C	01177.00	ı	CC	a f

534	of obs =	Numbe	MS	df	SS	Source
67.22	, 531) =	F(2			+	
0.0000	> F =	Prob :	1.86272	2 142	2843.72544	Model
0.2020	ared =	R-squ	.152096	531 21	11231.763	Residual
0.1990	-squared =	Adj R			+	
4.5991	MSE =	Root I	4080458	533 26.	14075.4884	Total
Beta		P> t	t	Std. Err.	Coef.	wage
					+	
.4712502		0.000	11.38	.0813995	.925947	educ
.2532571		0.000	6.11	.0171967	.1051282	exp
		0.000	-4.02	1.218865	-4.904318	cons

$$\hat{\beta}_2^* = \hat{\beta}_2 \frac{s_X}{s_Y} = 0.926 \left(\frac{2.615}{5.139} \right) = 0.471 \quad \hat{\beta}_3^* = \dots$$

lovb

true model:

$$Y_i = \beta_1 + \beta_2 INCL + \beta_3 EXCL + u_i$$

we estimate:

$$Y_{i} = \alpha_{1} + \alpha_{2} INCL + v_{i}$$

$$E[\hat{\alpha}_{2}] = \alpha_{2} = \beta_{2} + \beta_{3} \left((\rho_{EI}) \left(\frac{\sigma_{E}}{\sigma_{I}} \right) \right)$$
What you estimate using the 2 variable regression

The unbiased coefficient on the left out variable regression

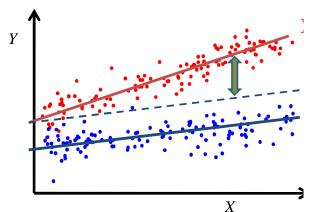
The variable regression

The unbiased coefficient on the left out variable variable regression

sign of bias: $\beta_3 * \rho_{EI}$

continuous/dummy interactions

 $\diamond Y_i = \beta_1 + \beta_2 X_i + \beta_3 \text{female}_i + \beta_4 \text{female}_i * X_i + u_i$



schematic

 $\diamond Y_i = \beta_1 + \beta_2 X_i + \beta_3 \text{female}_i + \beta_4 \text{female}_i * X_i + u_i$ X X

interaction of dummies

- if there is an interaction effect between two variables, the effect of one variable depends on the level of the other
- o eg the effect of marriage on wage depends on gender.
- interactions go both ways:
 - · the effect of gender depends on marital status, too

interaction of dummies

$\diamond Y_i$	$Y_i = \beta_1 + \beta_2$ female $+ \beta_3$ married $+ \beta_4$ female $*$ married $+ \beta_4$							
ı	:	Male	Female	Gender				
				Difference				
_				 				
	Unmarried	$\hat{\beta}_{_{1}}$	$\hat{oldsymbol{eta}}_{\!\scriptscriptstyle 1}$ + $\hat{oldsymbol{eta}}_{\!\scriptscriptstyle 2}$	$\hat{oldsymbol{eta}}_{2}$				
		â â	$\hat{\beta}_1 + \hat{\beta}_2$ $\hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 + \hat{\beta}_4$	l l a a				
	Married	$\beta_1 + \beta_3$	$\beta_1 + \beta_2 + \beta_3 + \beta_4$	$\beta_2 + \beta_4$				
=				-				
E	ffect of Marriage	$\hat{\beta}_{\scriptscriptstyle 3}$	$\hat{eta}_3 + \hat{eta}_4$	$eta_{\scriptscriptstyle 4}$				

Иi

example [let's calc tab from reg]

. table married female, c(mean wage) row col f(%7.2f)

 Married	male	Gender female	Total
no yes	8.35 10.88	8.26 7.68	8.31 9.40
Total	9.99	7.88	9.02

- . gen femxmar = female*married
- . reg wage female married femxmar

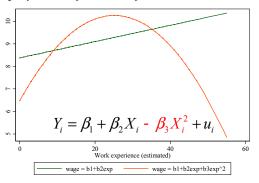
wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
$\hat{eta}_{\scriptscriptstyle 2}$ female $ $	0951892	.7350367	-0.13	0.897	-1.539132	1.348754
$\hat{eta}_{\scriptscriptstyle 3}$ married	2.521222	.6120814	4.12	0.000	1.318819	3.723626
$\hat{eta}_{_4}$ femxmar	-3.09704	.9072785	-3.41	0.001	-4.879344	-1.314737
$\hat{eta}_{_{1}}$ _cons	8.354677	.4936728	16.92	0.000	7.384882	9.324473

interpretation: transforming variables

- \diamond Lin: One unit change in X leads to a β_2 unit change in Y.
- \diamond Log-Lin: One unit change in X leads to a $100 * \beta_2$ % change in Y. (guj ed4:p180 fig6.4; ed5:p163 ex6.4)
- \diamond Lin-Log: One percent change in X leads to a $\beta_2/100$ unit change in Y. (guj: ed4:p182 fig6.5; ed5:p165-6 ex6.5)
- ♦ Log-Log (aka log-linear or "linear in logs"): One percent change in X leads to a β_2 % change in Y (elasticity).

quadratic model

If a *non-linear relationship* between *X* and *Y* is suspected, a *polynomial function of X* can be used to model it.



when it flips:

$$X_i^* = -\frac{\beta_2}{2\beta_3}$$

This curve reaches a maximum wage at the point were the marginal effect of experience is zero.