
theory

adam okulicz-kozaryn

adam.okulicz.kozaryn@gmail.com

this version: Thursday 9th November, 2023 08:22

1/23



outline

key scientific computing rules to get your started

and yet one more variation on general rules

the zen of Python

2/23



Know Your Data!

• simply cant use it well if you dont know it well

◦ (not just data; the field: theory, lit, method, etc)

◦ this is where you beat IT folks (MS/PhD just in IT)

• again, be prepared to invest a lot of time into your data

◦ use data that you’re passionate about

◦ or that can make $ (now or in future career)

◦ or ideally both!

• don’t forget to think about it! don’t be mindless!

◦ ask questions, be investigative, be critical

• double check, cross check, give to others to check

3/23



outline

key scientific computing rules to get your started

and yet one more variation on general rules

the zen of Python

key scientific computing rules to get your started 4/23



Wilson put it well

• print out Box 1 from these 2 art

◦ hang it at your office, home, and elsewhere
• https://journals.plos.org/plosbiology/article?id=10.

1371/journal.pbio.1001745

• https://journals.plos.org/ploscompbiol/article?id=10.

1371/journal.pcbi.1005510

• and Know Your Data (2nd slide)

• and variations on these, and other general rules follow

key scientific computing rules to get your started 5/23

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510


simplicity, cleanliness, and organization!

• keep it as simple as possible

◦ especially if overwhelmed or struggling

• say retain only 5vars and 25obs

◦ much easier to understand such data

• simplicity transpancy clarity:

◦ use fancy code: eg loops iff they simplify

• have chunks of code only once

• code it all from raw to final (replication principle)

• organize: sections, comments, and logical order (eg

rewrite, move code around)

key scientific computing rules to get your started 6/23



be fast/efficient

• the fancier the code, the more time/effort to write it

• don’t do fancy things unless they save time in the long run

• it’s all about managing complexity

• automate as much as you can

• simplify and be clear

• have general modules (sections or separate files)

◦ that can be reused for different projects

• be lazy: don’t reinvent the wheel–google often

key scientific computing rules to get your started 7/23



outline

key scientific computing rules to get your started

and yet one more variation on general rules

the zen of Python

and yet one more variation on general rules 8/23



more principles

• from 2 books about general programming (classics and

free!)

◦ http://catb.org/esr/writings/taoup/

◦ http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html

and yet one more variation on general rules 9/23

http://catb.org/esr/writings/taoup/
http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html


clarity

• “design for transparency and discoverability”

◦ write clean code [eg split 1 fn over many l for readability]

◦ avoid fancy code

◦ fancy code is buggier

◦ clarity is better than cleverness

• eg:

◦ group logical chunks together

◦ more than twice nested loops gets confusing

◦ if your code is mostly loops, consider functions

and yet one more variation on general rules 10/23



modularity

• “write simple parts that are cleanly connected”

• “controlling complexity is the essence of computer

programming”

◦ debugging dominates development

• eg:

◦ better many small loops that each does one thing, than

one huge (>100 lines) loop that does everything

◦ clear sections of one file

◦ or many files instead of one file without sections

and yet one more variation on general rules 11/23



modularity

• code should be organized logically not chronologically

◦ do free writing, but then reorganize

◦ like with papers, code should be rewritten, eg:

◦ no data management in data vis part

◦ move rename, replace, etc earlier

and yet one more variation on general rules 12/23



composition

• “design programs to be connected to other programs”

• notebook or its sec will produce output for another

notebook or sec

• eg: you clean up data in one file to make data ready for

another one to vis

◦ or just have one big file

• but the workflow needs to be logically organized

and yet one more variation on general rules 13/23



optimization (fancier, fewer lines)

• yes, but “get it working before optimizing” !

• eg:

◦ first make mpl hist for one var, make it working

◦ and then deploy it for 10 vars with a loop

and yet one more variation on general rules 14/23



extensibility

• “design for the future because it will be sooner than you

think”

◦ you will reuse your code in the near future

◦ so write it clean

◦ have sections, etc

◦ use lots of comments

◦ reorganize, rewrite

◦ optimize

and yet one more variation on general rules 15/23



silence

• “when a program has nothing surprising to say, it should

say nothing”

• drop unnecessary code

◦ if you think it may be useful in the future

comment it out

• do not generate unnecessary output, do not lose your

reader in unnecessary clutter

◦ if the output has nothing useful to say it should be dropped

◦ (or commented out)

and yet one more variation on general rules 16/23



automation (again)

• “rule of generation: avoid hand-hacking”

• because humans make mistakes and computers don’t,

computers should replace humans wherever possible

• automate anything that you can

• but stay human, focus on fun creative part, eg vis

• dont automate everything; eg dont crank out bunch of vis

mindlessly

and yet one more variation on general rules 17/23



save time: reuse (copy-paste), don’t reinvent the

wheel
• if someone has already solved a problem once, reuse it!

• it is very unlikely you are doing something completely new

◦ eg google ’student data analysis python’

• if anything, the problem is that people do not share their

code

• usually all you need to do is to adjust somebody else’s

code or your old code

◦ its like doing lit rev, but with code

◦ and with data too, eg google scholar psid biking to find

out how people use biking var in psid

and yet one more variation on general rules 18/23



save time: reuse, don’t reinvent the wheel

• ask people for code:

◦ your supervisor

◦ journal article authors

◦ your colleagues, friends, etc

• share your code

◦ you may want to protect some parts of it

◦ (critical, innovative research ideas, etc)

◦ but share as much as possible

• acknowledge others’ work

and yet one more variation on general rules 19/23



defensive programing

• “people are dumb-make program bullet-proof”

◦ you will find negative income, age over 200

• think of likely possibilities/instances; especially if you

suspect some specific problems

• thats also why its so important to interpret critically your

vis, if something looks funny or unlikely, maybe there’s a

mistake

and yet one more variation on general rules 20/23



outline

key scientific computing rules to get your started

and yet one more variation on general rules

the zen of Python

the zen of Python 21/23



• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren’t special enough to break the rules.

• Although practicality beats purity.

• Errors should never pass silently.

• Unless explicitly silenced.

• In the face of ambiguity, refuse the temptation to guess.
the zen of Python 22/23



• There should be one– and preferably only one –obvious

way to do it.

• Although that way may not be obvious at first unless

you’re Dutch.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it’s a bad idea.

• If the implementation is easy to explain, it may be a good

idea.

• Namespaces are one honking great idea – let’s do more of

those!

the zen of Python 23/23


	key scientific computing rules to get your started
	and yet one more variation on general rules
	the zen of Python

