
data management theory

adam okulicz-kozaryn

adam.okulicz.kozaryn@gmail.com

this version: Friday 15th April, 2022 12:12

1/41



outline

the golden rule

basic theory

programming principles by computer scientists

the zen of Python

2/41



TODO for myself

� cut this like 30% its wordy and especially repetetive!

3/41



outline

the golden rule

basic theory

programming principles by computer scientists

the zen of Python

the golden rule 4/41



Know thyself

� old proverb; can google, see wiki at home

· https://www.google.com/search?q=Know+thyself

· https://en.wikipedia.org/wiki/Know_thyself
� fascinating book http://www.hup.harvard.edu/

catalog.php?isbn=9780674013827

� but in this class, something else is even more important

the golden rule 5/41

https://en.wikipedia.org/wiki/Know_thyself
http://www.hup.harvard.edu/catalog.php?isbn=9780674013827
http://www.hup.harvard.edu/catalog.php?isbn=9780674013827


Know Your Data
� simply cannot manage it well if you don’t know it well

� again, be prepared to invest a lot of time into your data

· use data that either is of your interest

· or that can make $ (say use in future career)

· or ideally both!

� and use descriptive stats

· des sum tab edit list inspect , and especially graphs!

� think about it! don’t be mindless!

· ask questions, be investigative

� double check, cross check, give to others to check
the golden rule 6/41



the silver rule

� keep it as simple as possible

· especially if overwhelmed or struggling

� say retain only 10var and 100obs

· much easier to manage such data!

the golden rule 7/41



the three key rules

� simplicity transpancy clarity:

· use fancy code: macros, loops and ados iff they simplify

� have chunks of code only once

· use root .do, macros, loops, ados to accomplish that

� code it all from raw to final (replication principle)

the golden rule 8/41



all rules in simple words

� the fancier the code, the more time/effort to write it

� don’t do fancy things unless they save time in the long

run

� it’s all about managing complexity

� automate as much as you can

� simplify and be clear

� have general modules (sections or separate dofiles)

· that can be reused for different projects

� don’t reinvent the wheel–google often

the golden rule 9/41



things usually overlooked

� have chunks that you do not use but may be useful

(commented out)

� clarity and logical organization; clear sections

the golden rule 10/41



outline

the golden rule

basic theory

programming principles by computer scientists

the zen of Python

basic theory 11/41



accuracy or correctness

� it’s fundamental and obvious: code cannot be wrong

� we’ll cover some commands/tricks (eg assert )

· to make sure stata did what you think it did

� the bottom line and best advice:

· double check (if not 100% sure or always for rookies)

· especially at the beginning do not assume things

· double/triple check the whole dofile once finished

· use as much des stats as possible

basic theory 12/41



efficiency: few lines of code do many things
� efficiency==programming (macros, loops, ados)

� but also think how you can optimize your code

· do more in fewer lines, drop unnecessary things

� reorganize and rewrite!

· just like your papers: you print them out

· and move paragraphs and words around

· and you simplify and strike out unnecessary words

� do the same with code! drop everything you can!

� code should be “tight”

· as few lines as possible to perform given task
basic theory 13/41



efficiency: on the other hand
� but you also want to be extensive in a way

� in a good way...

� like with free writing, so with code

· do “free writing”

� be expressive and dump your ideas into dofile

� just be organized so that you know what is going on!

� yes, by all means, be efficient–drop unnecessary things

� but do not drop things that may be useful

· say in the future or other projects

· may comment them out (useful!)
basic theory 14/41



rewrite/revise

� do “free writing” with code, too (i often come up with

some idea out of sudden, and then just write it down...)

� start simple and keep on adding things

� rewrite/revise your code

� improve, add, modify, optimize

· (there is often a tendency to over optimize, i.e.

spending weeks on small chunk of code that does not

really matter that much)

basic theory 15/41



simplicity: different, often opposite, from efficiency

� people don’t realize this!

� be as simple as possible in writing the code (papers,

too)

� the more code you have and the more complicated it is:

· the more likely you have mistakes

· and the more difficult it is to find them

� do not complicate your code for the sake of fanciness

· yes, we do it all the time! don’t do it! simpler is better

basic theory 16/41



standardization (see my template organize.do)
� standardization helps to make fewer mistakes

· and make your code more transparent

� whole research process should be standardized; eg:

· have the same style for graphs, tables (more later)

· have the same tables of descriptive statistics

� you should have a template for a dofile (and for a

paper)!

· why waste time on tedious boring sections and parts

· you could use your time on creative and fun parts

instead!

· research production is like car production

· don’t do everything by hand every time!

· automate as much as possible and focus on fun, say

design

basic theory 17/41



modularity

� break large tasks into small (manageable)

blocks/components

· (like in dissertation–don’t overwhelm yourself doing

everything at once)

� the components are like sections in a paper, step-by-step

� it is easy then to reuse these components

basic theory 18/41



automation (closely related to standardization)

� everything should be coded

� no copy-paste, point-and-click, etc

� automate as much as possible!

� practical reason: much faster!

� technical reason: computers *never* make mistakes

� programming (macros, loops) help a grade deal

basic theory 19/41



documentation

� you may want to have notes...but mostly:

� documentation is just about having a commented dofile

� difficult to overestimate the dofile comments

� note, typically, i undercomment, too

basic theory 20/41



singularity

� as discussed in organization and documentation class:

· have only one chunk of code and one file in one place

� this principle is often overlooked

basic theory 21/41



portability

� your code should run easily on other computers

� say version 14

� use macros for paths

� always install needed packages

� say where data come from and load from url

� usually repost on your site, say goog drive

(data at source may change)

basic theory 22/41



tradeoffs: life is not so simple
� simplicity is sometimes inversely related to efficiency

· say in programming (loops, macros)

� simplicity is usually inversely related to automation

� so make some choices

� the more serious you are about coding

· the more you should care for automation and efficiency

� the more data management you do

· the more automation/efficiency actually simplifies

� like stata v excel: excel simpler for simple tasks

· but stata is simpler for complicated tasks
basic theory 23/41



tradeoffs

� Right tradeoff simplicity efficiency but often can make it

both simpler and more efficient! Eg have ugly lengthy

convoluted solution that can be made into brief sweet

simple one; and typically increase in efficiency

(simplicity) leads only to small decrease in simplicity

(efficiency ), use your judgement

basic theory 24/41



a matter of style

� apart from all these rules, different people have different

styles of programming

� just use whatever you like–a matter of taste

· eg i do not use global macros (i work on linux), you

may find them useful on windows

· i use foreach loops, but not while loops

· i have few big dofiles, but why not have many small

ones ?

� still, all dofiles must be clear and replicable

basic theory 25/41



outline

the golden rule

basic theory

programming principles by computer scientists

the zen of Python

programming principles by computer scientists 26/41



intuition
� it occurs to me that this class really is more like

computer science than social science

· CS have classes about c, python, etc.

� we have a class about stata

� but we still do programming, just in different language

· so i’ve read actual computer science lit

· and what i found useful is in this section

· great reference!

· essp Box 1 Summary of Best Practices–let’s see it!

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

programming principles by computer scientists 27/41

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745


more principles
� some more programming principles follow

� these are rather general programming principles

� they are applicable to any programming,

not only stat software; e.g. c, python, php, etc.

� yes, there is some repetition/reformulation of the earlier

rules

· but these are really important, so doesn’t hurt to repeat

� these principles come from 2 books about general

programming (classics and free!)

http://catb.org/esr/writings/taoup/

http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html

and free mit courses http://ocw.mit.edu/courses/

http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-00-introduction-to-computer-

science-and-programming-fall-2008/

programming principles by computer scientists 28/41

http://catb.org/esr/writings/taoup/
http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html


clarity
� “design for transparency and discoverability”

· write clean code

· avoid fancy code

· fancy code is buggier

· clarity is better than cleverness

� eg:

· group logical chunks together

· more than twice nested loops gets confusing

· if your code is mostly loops and macros, consider ado

file
programming principles by computer scientists 29/41



modularity

� “write simple parts that are cleanly connected”

� “controlling complexity is the essence of computer

programming”

· debugging dominates development

� eg:

· better many small loops that each do one thing than

one huge (>100 lines) loop that does everything

· clear sections of one dofile

· or many dofiles instead of one dofile without sections

programming principles by computer scientists 30/41



modularity

� code should be organized logically not chronologically

· do free writing, but then reorganize

· like with papers, code should be rewritten, eg:

· no data management in data analysis part

· move ”generate, recode” to the beginning

programming principles by computer scientists 31/41



composition

� “design programs to be connected to other programs”

� dofile will produce output for another dofile

� eg: you clean up data in one dofile to make data ready

for another dofile to analyze it

· or just have one big file

� but the workflow needs to be logically organized

· use master dofile if many dofiles

programming principles by computer scientists 32/41



optimization (fancier, fewer lines)
� yes, but “get it working before optimizing” !

� eg:

· recode data using simple commands

· then make it into macros

· then into loops

· then into ado

� if you are advanced you may skip some steps

· but make sure it is time efficient

· do not spend hours on fancy loops for sake of fanciness

· (hours spent on ado files are fine because you will reuse

them in the future)
programming principles by computer scientists 33/41



extensibility

� “design for the future because it will be sooner than you

think”

· you will reuse your code in the near future

· so write it clean

· have sections, etc

· use lots of comments

· reorganize, rewrite

· optimize

programming principles by computer scientists 34/41



silence
� “when a program has nothing surprising to say, it

should say nothing”

� drop unnecessary code

· if you think it may be useful in the future

comment it out, or better yet commit in git and delete

� do not generate unnecessary output, do not lose your

reader in unnecessary clutter, eg use silently

· eg: do not present all the descriptive statistics that

stata produced

· only the meaningful output

· if the output has nothing to say it should be dropped

· (or commented out)
programming principles by computer scientists 35/41



automation (again)
� “rule of generation: avoid hand-hacking”

� because humans make mistakes and computers don’t,

computers should replace humans wherever possible

� automate anything that you can

� your data management/analysis is repetitive and

involves few if...then...

· write a program that can do it and do more creative

tasks instead

� don’t assume things... use confirm and assert

� write ado programs – they are not that difficult

� write other programs – start with python or bash
programming principles by computer scientists 36/41



save time: reuse, don’t reinvent the wheel

� if someone has already solved a problem once, reuse it !

� it is very unlikely you are doing something completely

new

� if anything, the problem is that people do not share

their code

� usually all you need to do is to adjust somebody else’s

code or your old code

programming principles by computer scientists 37/41



save time: reuse, don’t reinvent the wheel
� ask people for code:

· your supervisor

· journal article authors

· your colleagues, friends, etc

� share your code

· you may want to protect some parts of it

· (critical, innovative research ideas, etc)

· but share as much as possible

� acknowledge others’ work–then they will be happier to

share
programming principles by computer scientists 38/41



defensive programing

� “people are dumb-make program bullet-proof”

· you will find negative income, age over 200, people

change gender over time etc...

· numbers saved as strings, etc

� think of all possibilities/instances; especially if you

suspect some specific problems...

and make your program bullet-proof, e.g.:

· confirm numeric variable price

· assert sex == 0 | sex == 1

programming principles by computer scientists 39/41



construct functions

� construct your own functions

in stata these are called ados

� especially if you have lots of code (>1k lines)

· write functions (new primitives) to perform common

tasks

� then a bunch of your code will be your functions

� and you will be calling (using) them to manipulate your

data

programming principles by computer scientists 40/41



outline

the golden rule

basic theory

programming principles by computer scientists

the zen of Python

the zen of Python 41/41



� Beautiful is better than ugly.

� Explicit is better than implicit.

� Simple is better than complex.

� Complex is better than complicated.

� Flat is better than nested.

� Sparse is better than dense.

� Readability counts.

� Special cases aren’t special enough to break the rules.

� Although practicality beats purity.

the zen of Python 42/41



� Errors should never pass silently.

� Unless explicitly silenced.

� In the face of ambiguity, refuse the temptation to guess.

� There should be one– and preferably only one –obvious

way to do it.

� Although that way may not be obvious at first unless

you’re Dutch.

� Now is better than never.

� Although never is often better than *right* now.

� If the implementation is hard to explain, it’s a bad idea.

� If the implementation is easy to explain, it may be a

good idea.

� Namespaces are one honking great idea – let’s do more

of those!

the zen of Python 43/41


	the golden rule
	basic theory
	programming principles by computer scientists
	the zen of Python

