
basic organization and documentation

adam okulicz-kozaryn

adam.okulicz.kozaryn@gmail.com

this version: Thursday 17th February, 2022 14:29

1/14

outline

directory (folder) and file (data and code (dofiles)) structure

code structure (within one file)

naming, labeling

2/14

outline

directory (folder) and file (data and code (dofiles)) structure

code structure (within one file)

naming, labeling

directory (folder) and file (data and code (dofiles)) structure 3/14

replication: raw− >clean− >analysis

� always keep raw data intact

� then manipulate it and save, even several times

� will have few dats at different stages

� can begin stata session at any stage

� blackboard: draw workflow

directory (folder) and file (data and code (dofiles)) structure 4/14

files in general singularity rule

• always one version of a dofile or datafile in one place

• if you have 2 versions of the same file

◦ sooner or later there will be problems!

◦ you will update/change one, but forget the other one, etc

• exception is backup; but you never edit the backup!

directory (folder) and file (data and code (dofiles)) structure 5/14

code in general singularity rule : branching
• just like with files, so with code:

• have the same chunk of code only in one place

• if same code repeats across multiple dofiles:

◦ then build hierarchy: parent-children

◦ parent does basic and generic

◦ children pick up same data from parent and diverge

• eg use same data for many projects

◦ parent dofile makes it ready for multiple papers

◦ proces raw data into friendly shape

(recode, label, calculate new vars, etc)

◦ and then always just start from there for each new project

• blackboard: draw diagram/flow chart (next slide)
directory (folder) and file (data and code (dofiles)) structure 6/14

code and data: hierarchy and branching

• never overwrite the original datafile, and have datafiles at

different stages esp if data complex:

◦ rawFile− >file1− >file2 –and those are produced by:

dofile0− >dofile1− >dofile2 (or subsequent sects in one

dofile)

• dofile0 will common for all projects

◦ dofile0 may have 2 children: dofile1A and dofile1B

• likewise, rawFile may have 2 diff children file1A and file1B

directory (folder) and file (data and code (dofiles)) structure 7/14

backup

• backup all files at least once a week–computers break

regularly; flash drives break really often

• have automatic system for backups (i use cron)

◦ otherwise you’ll forget

• just keep copy of everything in the cloud, goog, amzn, etc

directory (folder) and file (data and code (dofiles)) structure 8/14

outline

directory (folder) and file (data and code (dofiles)) structure

code structure (within one file)

naming, labeling

code structure (within one file) 9/14

sections, subsections

• dofile should have a multi-layerd structure

◦ like chapters, sections, sub-sect in book

• for different levels, use different kinds of comments: box,

block, one line, horizontal line, etc

type them in dofiles and scroll down to already existing

◦ now i just use ’***’, ’**’, ’*’, ’//’

◦ i used to use ’//——’ (still in dofile)

• definitely use “FIXME” “LATER” “KLUDGE” etc

code structure (within one file) 10/14

outline

directory (folder) and file (data and code (dofiles)) structure

code structure (within one file)

naming, labeling

naming, labeling 11/14

general

• naming and labeling looks like waste of time

• but at the end saves time

• importantly, it prevents mistakes/misinterpretations

◦ especially, if a project is big and/or you share it with others

◦ or if it takes long time

naming, labeling 12/14

variable names, labels, and value labels

• variable name is...a variable name, eg educ

• var lab describes var, eg “highest degree completed”

• value label describes values that a variable takes on

◦ (output of codebook , or tab and tab,nola), eg:

◦ “primary school” 1

◦ “high school” 2

◦ “college or university”3

• dofile

naming, labeling 13/14

labels tips

• give vars short names eg inc

• but labels should be descriptive eg “2004 hh income”

• labels prevent confusion later and for others

• they automatically appear on graphs, regressions, etc.

• use lookfor , esp if you have many vars

• be lazy (remember it’s our core value)

◦ only label what’s necessary

◦ indeed, only keep data and variables that are necessary

◦ you have the code, so you can always add back in later

naming, labeling 14/14

	directory (folder) and file (data and code (dofiles)) structure
	code structure (within one file)
	naming, labeling

