
basic organization and documentation

adam okulicz-kozaryn

adam.okulicz.kozaryn@gmail.com

this version: Thursday 4th October, 2018 18:29

1/1

outline

2/1

outline

misc 3/1

datasets of the day
� climate! (easy access!)
· https://wonder.cdc.gov/EnvironmentalClimateData.html

� religion!
· http://www.thearda.com/Archive/Files/Descriptions/RCMSCY10.asp

· http://www.thearda.com/Archive/Files/Descriptions/RCMSCY.asp

· http://www.thearda.com/Archive/Files/Descriptions/CMS90CNT.asp

· http://www.thearda.com/Archive/Files/Descriptions/CMS52CNT.asp

· more: http://www.thearda.com/Archive/Browse_s.asp?pg=

Browse_s.asp&sr=0&m=31&t=Search%20Data%20Archive&

searchterms=county&p=B&c=N

� state level policy http:

//ippsr.msu.edu/public-policy/correlates-state-policy

misc 4/1

https://wonder.cdc.gov/EnvironmentalClimateData.html
http://www.thearda.com/Archive/Files/Descriptions/RCMSCY10.asp
http://www.thearda.com/Archive/Files/Descriptions/RCMSCY.asp
http://www.thearda.com/Archive/Files/Descriptions/CMS90CNT.asp
http://www.thearda.com/Archive/Files/Descriptions/CMS52CNT.asp
http://www.thearda.com/Archive/Browse_s.asp?pg=Browse_s.asp&sr=0&m=31&t=Search%20Data%20Archive&searchterms=county&p=B&c=N
http://www.thearda.com/Archive/Browse_s.asp?pg=Browse_s.asp&sr=0&m=31&t=Search%20Data%20Archive&searchterms=county&p=B&c=N
http://www.thearda.com/Archive/Browse_s.asp?pg=Browse_s.asp&sr=0&m=31&t=Search%20Data%20Archive&searchterms=county&p=B&c=N
http://ippsr.msu.edu/public-policy/correlates-state-policy
http://ippsr.msu.edu/public-policy/correlates-state-policy

outline

directory (folder) structure 5/1

replication again

� have a dofile that produces final results from raw data

� always keep raw data intact

� then manipulate it and save again, even several times

� at the end of your project you may end up

· with several datasets at different levels of advancement

� then you may begin your stata session at any level

directory (folder) structure 6/1

many ways to do it

� I am just giving an example of how I do it; but see:

� Scott Long ”The Workflow of Data Analysis Using Stata”

· I do not like his way!

· no one’s way is the best way

· whatever floats your boat

� but always have it, be consistent

· and give it some thought!

directory (folder) structure 7/1

always have it!

� directory structure probably seems to you unnecessary

� but trust me, it is useful, just get in habit of having it

� you will see it’s useful, once you start doing merging and

outputing tables and graphs

� without directory structure, it’ll get messy

� the more complex the project, the more important the

directory structure

� in this class, try to make the project as complicated as

possible

directory (folder) structure 8/1

it’s automatic! automate and standarize rules
� as discussed earlier, Stata can create directories and move

files around

� so just have a generic dofile with a preamble

· clear , version , set more off , etc

· and a bunch of cap mkdir to create dir structure

� if I start a new project, I just start with my template

� also, standardization is good!

� it makes you move faster, you’re on “autopilot”

· it frees your mind to do more interesting things

� and it is easier to spot things that are out of normal

� so standardize and automate as much as possible

(more about this later in theory.pdf)directory (folder) structure 9/1

files in general singularity rule
� organize dofiles and datafiles in folders

� always one version of a dofile or datafile in one place

(see ’singularity’ principle in theory.pdf)

� if you have 2 versions of the same file

· sooner or later there will be problems!

· you will update/change one, but forget the other one, etc

� exception is backup; but you never edit the backup!

� and you may and should keep historical record of your files

� mark it clearly, and always have only one current

(working) file

� again, all that is best done and automatic in GIT
directory (folder) structure 10/1

code in general singularity rule

� just like with files, so with code:

� have the same chunk of code only in one place

� if you have code that does the same thing multiple times

(in same or many dofiles)

� then it is time to build some hierarchy and have

� some parent and some child dofiles

� typically, a parent will do something basic and generic

� and then different children will pick up the data from

parent and each will be doing something differently

directory (folder) structure 11/1

these rules are necessary!

� standardization helps: just doing things in the same way

· it’s faster and easier to spot mistakes

� and singularity helps–just do it one time!

· say you work with GSS

· then just manipulate it into the shape you need once and

for all

· then use it for all the other projects in your lifetime

· well, of course you’ll make some updates

· but they’re small and just in one file

directory (folder) structure 12/1

hierarchy of dofiles

� an example when having many dofiles is useful is when

you use the same data for many projects

� this happens more often than it doesn’t

� it makes sense to have one dofile that makes data ready

· it processes raw data and saves it in usable format

· and then always start from there

� again, you always want to start from the very raw data

· so just include at the beginning of each project

do datMan.do

· and then do your project specific analysis
directory (folder) structure 13/1

hierarchy of dofiles
� always extract common chunks into one file

� typically there will be one (parent) file

· doing general data management for each dataset

� say you use GSS for multiple projects,

· typically for each project, you have to first do same things

to get data usable

· recode, label, calculate new vars, etc

� then just have a “root” directory for that dataset

· and then each project will start with data from that root

directory and do project specific-things

� otherwise, if you have multiple files doing the same things

� it will get mixed up!directory (folder) structure 14/1

datafiles
� never overwrite the original datafile, and a good idea to

keep datafiles at different stage of advancement

· especially if data are complex:

· rawFile− >file1− >file2 –and those are produced by:

dofile0− >dofile1− >dofile2 (or subsequent sections in

one dofile!)

� and again dofile0 will be common for all projects

� but there may be for project A abd B: dofile1A and

dofile1B

� in other words one parent dofile0 will have 2 children:

dofile1A and dofile1B

� likewise, rawFile will have 2 different children file1A and

file1B

directory (folder) structure 15/1

the one dofile to rule them all

� if you have a complicated project you may want to have

many dofiles

� still you want to have a master dofile that runs them

· “the one dofile to rule them all”

directory (folder) structure 16/1

branching

� not only dofies and datafiles have parents

· whole projects do!

� usually a project spins off other projects

� then you may want to clearly mark who is a parent

and who is a child (for record keeping)

� and start a new project folder and directory structure

for each new one

directory (folder) structure 17/1

backup

� backup all files at least once a week–computers break

regularly; flash drives break really often

� have automatic system for backups (i use cron)

· otherwise you’ll forget

� backup to remote places!

· if your backup hd is in the same physical place

· then in case of fire, flooding, burglary, etc

· the backup is gone!

directory (folder) structure 18/1

outline

code structure 19/1

sections, subsections
� especially for beginners, one dofile would do

� (again, later, when you have multiple projects from same

data, extract common code to one parent)

� dofile should have a multi-layerd structure

· eg chapters, sections, subsections etc (like a paper or

book)

� it is useful to mark large chunks of code, eg “datMan”

· i do it in my code

� for different levels, use different kinds of comments: box,

block, one line, horizontal line, etc

type them in dofiles and scroll down to already existing

· now i just use ’***’, ’**’, ’*’, ’//’

· i used to use —— (still in dofile)

� definitely use “FIXME” “LATER” “KLUDGE” etc

code structure 20/1

outline

naming, labeling 21/1

general

� naming and labeling looks like waste of time

� but at the end saves time

� labels are like “postit” notes

� importantly, it prevents mistakes/misinterpretations

· especially, if a project is big and/or you share it with others

· or if it takes long time

naming, labeling 22/1

variable names, labels, and value labels

� variable name is...a variable name, eg educ

� var lab describes var, eg “highest degree completed”

� value label describes values that a variable takes on

· (output of codebook , or tab and tab,nola), eg:

· “primary school” 1

· “high school” 2

· “college or university”3

� dofile

naming, labeling 23/1

labels tips

� give variables short names, eg inc

� labels, on the other hand should be descriptive, eg “2004

hh income”

� labels prevent confusion later and for others

� they automatically appear on graphs, regressions, etc.

� use lookfor , especially if you have many variables

� be lazy (remember it’s our core value)

· only label what is necessary

· indeed, only keep data and variables that are necessary

· you have the code, so you can always add back in later
naming, labeling 24/1

more tips on var names

� i dont like ’ ’ anymore

� i just use Caps to denote words, eg

� hhInc as opposed to hh inc; i guess it’s cleaner

� and typicaly i have 3 letter var namees ’swb’

� or 6 letter that combine 2 words: say menHea for mental

health

� but do whatever is natural to you!

· and is simple clean and consistent

naming, labeling 25/1

	misc
	directory (folder) structure
	code structure
	naming, labeling

